Addressing Common Surgeon Concerns and/or Stem Philosophies

Initial Fixation:
- Scratch fit of Trabecular Metal material
- Press fit area of the 14° proximal A/P Taper
- Increased proximal bone support from the 23.5° neck cut

Rotational Stability:
- Increased proximal bone support from the 23.5° neck cut
- Scratch fit of Trabecular Metal material
- Biologic ingrowth potential of Trabecular Metal material

Subsidence Prevention:
- Press fit of the 14° proximal A/P Taper
- Greater Speed gapping
- Scratch fit of Trabecular Metal material
- Biologic ingrowth potential of Trabecular Metal material

Stress Shielding:
- Press fit of the 14° proximal A/P Taper
- Promotes proximal loading
- Biologic ingrowth potential of Trabecular Metal material
- Promotes proximal loading
- Basic stem geometry promotes proximal loading

Long-term Fixation:
- Biologic ingrowth potential of Trabecular Metal material

Instrument Recommendations

Converting a non-VerSys Hip Surgeon
Case #1 – Core Instruments (Stem Sizes 11 – 14)
- Required Kit: R017800001-00 for Reamers, Osteotomy guides, & Core Prophylaxis
- Required Kit: R017800001-15 for Sz 15

Case #2 – General Instruments
- Required Kit: R017800002-00 for General Instruments
- Required Kit: R017800002-02 for Sz 12 & 14 Blade Tool
- Optional Kit: R017800002-01 for Sz 22 & 26 Head
- Tool: Limited Supply

Case #3 – Micro Sizes
- Optional Kit: R017800003-00 for Reamers, Osteotomy guides, & Core Prophylaxis
- Limited Supply

Case #4 – Macro Sizes
- Optional Kit: R017800004-00 for Reamers, Osteotomy guides, & Core Prophylaxis
- Limited Supply

Converting a VerSys® Hip Surgeon
Case #1 – Core Instruments (Stem Sizes 11 – 14)
- Required Kit: R017800001-00 for Reamers, Osteotomy guides, & Core Prophylaxis
- Required Kit: R017800001-15 for Sz 15

Case #2 – General Instruments
- Required Kit: R017800002-00 for General Instruments
- Limited Supply

Case #3 – Micro Sizes
- Optional Kit: R017800003-00 for Reamers, Osteotomy guides, & Core Prophylaxis
- Limited Supply

Case #4 – Macro Sizes
- Optional Kit: R017800004-00 for Reamers, Osteotomy guides, & Core Prophylaxis
- Limited Supply

Stem Part Numbers

Standard Offset
971946-001-00 sz 11 Standard Offset
971946-012-00 sz 12 Standard Offset
971946-013-00 sz 13 Standard Offset
971946-014-00 sz 14 Standard Offset
971946-015-00 sz 15 Standard Offset
971946-016-00 sz 16 Standard Offset
971946-017-00 sz 17 Standard Offset
971946-018-00 sz 18 Standard Offset

Extended Offset
971946-021-20 sz 11 Extended Offset
971946-022-20 sz 12 Extended Offset
971946-023-20 sz 13 Extended Offset
971946-024-20 sz 14 Extended Offset
971946-025-20 sz 15 Extended Offset
971946-026-20 sz 16 Extended Offset
971946-027-20 sz 17 Extended Offset
971946-028-20 sz 18 Extended Offset

Templates/Collaterals
971946-001-00 Brochure
971946-002-00 Surgical Technique
971946-006-00 Metalon® Overlay
971946-020-00 Multimedia Overview CD
971946-029-00 Templates

Please refer to package insert for complete product information, including contraindications, warnings, precautions, and adverse effects.

Contact your Zimmer Representative or visit us at www.zimmer.com
Key Features & Benefits

Proximal Trabecular Metal Material
- The initial scratch R (75% greater than base) helps to provide initial fixation, rotational stability, solid stability (and prevent subsidence) [1-4].
- The biologic ingrowth potential (double the pore volume of beads) helps to provide long-term fixation, pseudo-loads (avoiding negative stress shielding), and subsidence prevention [5-7].

14° Proximal A/P Taper
- This geometry helps to provide initial fixation, rotational stability, pseudo-load (avoiding negative stress shielding) and subsidence prevention (45% greater resistance to subsidence compared to traditional geometry) [8].

23.5° Neck Cut
- This biologically active increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [9].

A/P Relief
- This bone sparing neckcut increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [10].

Key Features & Benefits

Proximal Trabecular Metal Material
- The initial scratch R (75% greater than base) helps to provide initial fixation, rotational stability, solid stability (and prevent subsidence) [1-4].
- The biologic ingrowth potential (double the pore volume of beads) helps to provide long-term fixation, pseudo-loads (avoiding negative stress shielding), and subsidence prevention [5-7].

14° Proximal A/P Taper
- This geometry helps to provide initial fixation, rotational stability, pseudo-load (avoiding negative stress shielding) and subsidence prevention (45% greater resistance to subsidence compared to traditional geometry) [8].

23.5° Neck Cut
- This biologically active increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [9].

A/P Relief
- This bone sparing neckcut increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [10].

Key Features & Benefits

Proximal Trabecular Metal Material
- The initial scratch R (75% greater than base) helps to provide initial fixation, rotational stability, solid stability (and prevent subsidence) [1-4].
- The biologic ingrowth potential (double the pore volume of beads) helps to provide long-term fixation, pseudo-loads (avoiding negative stress shielding), and subsidence prevention [5-7].

14° Proximal A/P Taper
- This geometry helps to provide initial fixation, rotational stability, pseudo-load (avoiding negative stress shielding) and subsidence prevention (45% greater resistance to subsidence compared to traditional geometry) [8].

23.5° Neck Cut
- This biologically active increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [9].

A/P Relief
- This bone sparing neckcut increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [10].

Thus, the initial scratch R (75% greater than base) helps to provide initial fixation, rotational stability, solid stability (and prevent subsidence) [1-4].

The biologic ingrowth potential (double the pore volume of beads) helps to provide long-term fixation, pseudo-loads (avoiding negative stress shielding), and subsidence prevention [5-7].

This geometry helps to provide initial fixation, rotational stability, pseudo-load (avoiding negative stress shielding) and subsidence prevention (45% greater resistance to subsidence compared to traditional geometry) [8].

This biologically active increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [9].

This bone sparing neckcut increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [10].

Thus, the initial scratch R (75% greater than base) helps to provide initial fixation, rotational stability, solid stability (and prevent subsidence) [1-4].

The biologic ingrowth potential (double the pore volume of beads) helps to provide long-term fixation, pseudo-loads (avoiding negative stress shielding), and subsidence prevention [5-7].

This geometry helps to provide initial fixation, rotational stability, pseudo-load (avoiding negative stress shielding) and subsidence prevention (45% greater resistance to subsidence compared to traditional geometry) [8].

This biologically active increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [9].

This bone sparing neckcut increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [10].

Thus, the initial scratch R (75% greater than base) helps to provide initial fixation, rotational stability, solid stability (and prevent subsidence) [1-4].

The biologic ingrowth potential (double the pore volume of beads) helps to provide long-term fixation, pseudo-loads (avoiding negative stress shielding), and subsidence prevention [5-7].

This geometry helps to provide initial fixation, rotational stability, pseudo-load (avoiding negative stress shielding) and subsidence prevention (45% greater resistance to subsidence compared to traditional geometry) [8].

This biologically active increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [9].

This bone sparing neckcut increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [10].

Thus, the initial scratch R (75% greater than base) helps to provide initial fixation, rotational stability, solid stability (and prevent subsidence) [1-4].

The biologic ingrowth potential (double the pore volume of beads) helps to provide long-term fixation, pseudo-loads (avoiding negative stress shielding), and subsidence prevention [5-7].

This geometry helps to provide initial fixation, rotational stability, pseudo-load (avoiding negative stress shielding) and subsidence prevention (45% greater resistance to subsidence compared to traditional geometry) [8].

This biologically active increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [9].

This bone sparing neckcut increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [10].

Thus, the initial scratch R (75% greater than base) helps to provide initial fixation, rotational stability, solid stability (and prevent subsidence) [1-4].

The biologic ingrowth potential (double the pore volume of beads) helps to provide long-term fixation, pseudo-loads (avoiding negative stress shielding), and subsidence prevention [5-7].

This geometry helps to provide initial fixation, rotational stability, pseudo-load (avoiding negative stress shielding) and subsidence prevention (45% greater resistance to subsidence compared to traditional geometry) [8].

This biologically active increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [9].

This bone sparing neckcut increases proximal bone support to the implant to provide enhanced cortical fixation and rotational stability [10].
Proximal Trabecular Material

- The initial scratch N (75% greater than beads) helps to provide initial fixation, rotational stability, and absorb stress (and prevent subsidence) 1-10.
- The increased ingrowth potential (double the pore volume of beads) helps to provide long-term fixation, proximal loading (avoiding negative stress shiolding), and subsidence prevention 11-20.

23.5° Neck Cut

This highly angular design increases proximal bone support to the implant to provide enhanced initial fixation and rotational stability 20-25.

A/P Relief

This geometry helps to provide initial fixation, rotational stability, proximal loading (avoiding negative stress shiolding), and subsidence prevention (45% greater resistance to subsidence in biomechanical testing) 26-29.

Key Features & Benefits

2. **Friction Coefficients of Porous Tantalum and Cancellous & Cortical Bone** Presented at the 21st Annual American Society of Biomechanics, Clemson, SC, Sep 1997

3. **Interfacial Frictional Behavior: Cancellous Bone, Cortical Bone, and Atraumatic Markers, Clips, and Non-Trabecular Metal Material** Cranial Defects

4. **Flexural Rigidity of Laboratory and Surgical Substitutes for Human Bone with a 14˚ taper.**

14. **Clinical experience with porous tantalum cervical interbody implants** Presented in poster presentation format at 3rd World Congress of Spine Surgeons, New Orleans, LA 2005

15. **Proximal Trabecular Metal Acetabulum – 2 to 5 Year Results** Poster 1530, 50th Annual Meeting of the Orthopaedic Research Society, San Francisco, CA 2004

16. **Bone Loss in Revision Total Knee Arthroplasty** JOA, Vol. 18, No. 3, Suppl. 1, April 2003 S. David Stulberg

Key Features & Benefits

Proximal Trabecular Material

- The initial scratch H (0.75% greater than base) helps to provide initial fixation, rotational stability, axial stability, and prevent subsidence.14-16

- The biology-improving potential (double the pore volume of beads) helps to provide long-term fixation, prosthetic loading (avoiding negative stress shielding), and subsidence prevention.17-20

23.5° Neck Cut

- This biologically active increases proximal bone support to the implant to provide enhanced osseous fixation and rotational stability.12,13-14

A/P Relief

- This geometry helps to provide initial fixation, rotational stability, prosthetic loading (avoiding negative stress shielding), and improved subsidence prevention (460% greater resistance to subsidence than typical stem geometries).18-22

4. Key Features & Benefits

- The reduced A/P relief of the stem geometry in the distal tip allows a 14° taper. Forces are distributed to a greater area across the proximal femur and the proximal femoral anatomy is optimally fit within the cross-section provides bone support to the implant to provide enhanced osseous fixation and rotational stability.6,18

- The reduced A/P relief of the stem geometry in the distal tip allows a 14° taper. Forces are distributed to a greater area across the proximal femur and the proximal femoral anatomy is optimally fit within the cross-section provides bone support to the implant to provide enhanced osseous fixation and rotational stability.6,18

Trabecular Metal Primary Hip Prosthesis Technology References and History - Chronological Order

- 9. Non-Trabecular Metal Material order from association 1999

Addressing Common Surgeon Concerns and/or Stem Philosophies

Initial Fixation:
• Scratch fit of Trabecular Metal material
• Press-fit area of the 14° proximal A/P Taper
• Increased proximal bone support from the 23.5° neck cut

Rotational Stability:
• Increased proximal bone support from the 23.5° neck cut
• Scratch fit of Trabecular Metal material
• Biologic ingrowth potential of Trabecular Metal material

Subsidence Prevention:
• Press-fit of the 14° proximal A/P Taper
• Greater Stem Mass
• Scratch fit of Trabecular Metal material
• Biologic ingrowth potential of Trabecular Metal material

Stress Shielding:
• Press-fit of the 14° proximal A/P Taper
• Greater Stem Mass
• Scratch fit of Trabecular Metal material
• Biologic ingrowth potential of Trabecular Metal material
• Basic stem geometry promotes proximal loading

Long-term Fixation:
• Biologic ingrowth potential of Trabecular Metal material

Instrument Recommendations

Converting a non-Versys® Hip Surgeon
Case #1 – Core Instruments (Stem Sizes 11 – 16)
Required Kit # 00-7865-001-00 for Rasps, Osteotomy Guides, & Cone Provisionals
Case #2 – General Instruments
Required Kit # 00-7865-002-00 General Instruments
Required Kit # 00-7865-002-02 for 18 and 32mm Head Tools
Optional Kit # 00-7865-002-01 for 22 and 26 Head Tools
• Std. – Standard Offset
Case #1 – Stems Sizes (11, 12, 13)
Optional Kit # 00-7865-003-00 for Receptacle, Obturator Guides, & Cone Provisionals – Limited Supply
Optional Kit # 00-7865-003-00 for Receptacle, Obturator Guides, & Cone Provisionals – Limited Supply
Case #1 – Stems Sizes (14, 15, 16)
Case #1 – Stems Sizes (17, 18)

Converting a Versys® Hip Surgeon
Case #1 – Core Instruments (Stem Sizes 11 – 16)
Required Kit # 00-7865-001-00 for Rasps, Osteotomy Guides, & Cone Provisionals
Case #2 – General Instruments
Required Kit # 00-7865-001-01 for Reamers
Case #3 – General Instruments
Not Required. Use Versys® General Instruments Already Placed
Optional Kit # 00-7865-003-00 for Receptacle, Obturator Guides, & Cone Provisionals – Limited Supply
Optional Kit # 00-7865-003-00 for Receptacle, Obturator Guides, & Cone Provisionals – Limited Supply
Case #1 – Stems Sizes (14, 15, 16)
Case #1 – Stems Sizes (17, 18)

Stem Part Numbers
Standard Offset
97-7864-009-00 Size 9 Standard Offset
97-7864-010-00 Size 10 Standard Offset
97-7864-011-00 Size 11 Standard Offset
97-7864-012-00 Size 12 Standard Offset
97-7864-013-00 Size 13 Standard Offset
97-7864-014-00 Size 14 Standard Offset
97-7864-015-00 Size 15 Standard Offset
97-7864-016-00 Size 16 Standard Offset
97-7864-017-00 Size 17 Standard Offset
97-7864-018-00 Size 18 Standard Offset
Extended Offset
97-7864-021-00 Size 11 Extended Offset
97-7864-022-00 Size 12 Extended Offset
97-7864-023-00 Size 13 Extended Offset
97-7864-024-00 Size 14 Extended Offset
97-7864-025-00 Size 15 Extended Offset
97-7864-026-00 Size 16 Extended Offset
97-7864-027-00 Size 17 Extended Offset
97-7864-028-00 Size 18 Extended Offset

Templates/Collaterals
97-7864-001-00 Brochure
97-7864-002-00 Surgical Technique
97-7864-006-00 Quick-Reference Guide
97-7864-020-00 Multimedia Overview CD
97-7864-050-00 Templates

Please refer to package insert for complete product information, including contraindications, warnings, precautions, and adverse effects.

Contact your Zimmer Representative or visit us at www.zimmer.com
Addressing Common Surgeon Concerns and/or Stem Philosophies

Initial Fixation:
- Scratch fit of Trabecular Metal material
- Press-fit area of the 14° proximal A/P Taper
- Increased proximal bone support from the 23.5° neck cut

Rotational Stability:
- Increased proximal bone support from the 23.5° neck cut
- Press-fit area of the 14° proximal A/P Taper
- Scratch fit of Trabecular Metal material
- Biologic ingrowth potential of Trabecular Metal material

Subsidence Prevention:
- Press-fit of the 14° proximal A/P Taper
- Greater Speed Eight
- Scratch fit of Trabecular Metal material
- Biologic ingrowth potential of Trabecular Metal material

Stress Shielding:
- Press-fit of the 14° proximal A/P Taper promotes proximal loading
- Biologic ingrowth potential of Trabecular Metal material promotes proximal loading
- The A/P Relief helps avoid mid-stem loading, which promotes proximal loading
- Basic stem geometry promotes proximal loading

Long-term Fixation:
- Biologic ingrowth potential of Trabecular Metal material

Instrument Recommendations

Converting a Non-VerSys Hip Surgeon
- **Case #1 – Core Instruments (Stem Sizes 11 – 16)**
 - Required Kit # 00-7865-001-00 for Rasps, Osteotomy Guides, & Cone Provisionals

Converting a VerSys® Hip Surgeon
- **Case #1 – Core Instruments (Stem Sizes 11 – 16)**
 - Required Kit # 00-7865-001-00 for Rasps, Osteotomy Guides, & Cone Provisionals

Stem Part Numbers

- **Standard Offset**
 - # 87-76-001-00 – Size 9 Standard Offset
 - # 87-76-010-00 – Size 10 Standard Offset
 - # 87-76-011-00 – Size 11 Standard Offset
 - # 87-76-012-00 – Size 12 Standard Offset
 - # 87-76-013-00 – Size 13 Standard Offset
 - # 87-76-014-00 – Size 14 Standard Offset
 - # 87-76-015-00 – Size 15 Standard Offset
 - # 87-76-016-00 – Size 16 Standard Offset
 - # 87-76-017-00 – Size 17 Standard Offset
 - # 87-76-018-00 – Size 18 Standard Offset

- **Extended Offset**
 - # 87-76-011-20 – Size 11 Extended Offset
 - # 87-76-012-20 – Size 12 Extended Offset
 - # 87-76-013-20 – Size 13 Extended Offset
 - # 87-76-014-20 – Size 14 Extended Offset
 - # 87-76-015-20 – Size 15 Extended Offset
 - # 87-76-016-20 – Size 16 Extended Offset
 - # 87-76-017-20 – Size 17 Extended Offset
 - # 87-76-018-20 – Size 18 Extended Offset

Templates/Collaterals

- # 87-76-001-00 – Brochure
- # 87-76-002-00 – Surgical Technique
- # 87-76-003-00 – Quick-Reference Guide
- # 87-76-023-00 – Multimedia Overview CD
- # 87-76-034-00 – Templates

Please refer to package insert for complete product information, including contraindications, warnings, precautions, and adverse effects.

Contact your Zimmer Representative or visit us at www.zimmer.com